ITIS "OTHOCA" ORISTANO

PARAMETRI DI TAGLIO DELLA FORATURA

Prof. Ignazio Peddis A.S. 2007/08

La foratura

L'operazione di foratura può comprendere le seguenti fasi operative:

- Centratura (individuazione dell'asse del foro)
- Foratura (esecuzione del foro)
- Allargatura (aumento del diametro del foro)
- Alesatura (operazione di finitura del foro)

Parametri di taglio

Il numero di giri teorico si trova con la nota formula:

$$\mathbf{n}_{\mathsf{t}} = \frac{1000 \cdot \mathsf{V}_{\mathsf{t}}}{(\pi \cdot \mathsf{d})}$$

[giri/min]

dalla scheda di macchina si assume il numero di giri (n) disponibile (n < nt), ed un avanzamento (a) compatibile con la lavorazione.

Velocità di taglio e avanzamenti consigliati per punte HSS

Vt [m/min] e a [mm/giro] nella foratura con punte in HSS												
Materiale		Diametro della punta (HSS)										
		2	5	8	12	16	25	40	60			
Acciaio	∨t	Da 25 a 35										
500 N/m m 2	а	0,05	0,1	0,16	0,22	0,25	0,32	0,45	0,5			
Acciaio	∨t	Da 20 a 30										
700 N/mm2	а	0,05	0,1	0,16	0,22	0,25	0,32	0,45	0,5			
Acciaio	∨t	Da 16 a 20										
900 N/mm2	а	0,04	0,07	0,12	0,16	0,18	0,25	0,32	0,4			
Ghisa	∨t	Da 20 a 30										
200 HB	а	0,07	0,12	0,2	0,28	0,32	0,4	0,5	0,6			
Ghisa	٧t			Da 16 a 20								
240 HB	Α	0,06	0,1	0,16	0,22	0,25	0,32	0,4	0,5			
Ottone	٧t	Da 60 a 100										
	а	0,1	0,15	0,2	0,25	0,32	0,4	0,5	0,6			
Allum inio	٧t	Da 40 a 120										
	а	0,1	0,16	0,2	0,26	0,32	0,42	0,5	0,61			

Velocità di taglio e avanzamenti consigliati per punte WC

Vt [m/min] e a [mm/giro] nella foratura con punte in WC									
			Diametro della Punta (WC)						
M ateriale			da3	а8	da 8	a 20	da 20	a 40	
- Acciai da bonifica o per UT -	Rm = 850 - 1000 N/mm2		40	50	45	55	50	60	
			0,02	0,05	0,05	0,12	0,12	0,18	
	Rm=1000 - 1200 №mm2		25	32	30	38	35	40	
			0,02	0,04	0,04	0,08	0,08	0,12	
	Rm = 1200 - 1400 N/mm3		20	25	22	28	35	40	
			0,02	0,03	0,03	0,06	0,06	0,08	
Acciaio temprato	HRC = 50		8	10	10	12			
			0,01	0,02	0,02	0,03			
Ghisa grigia	fino a HB = 250		40	60	50	70	60	80	
			0,04	0,08	0,08	0,16	0,16	0,3	
Ghisa legata -	HB = 250 - 350		20	40	25	50	30	60	
			0,02	0,04	0,04	0,08	0,08	0,16	
	HB = 350 - 450		8	20	10	25	12	30	
			0,02	0,05	0,05	0,1	0,1	0,2	
Ghisa sferoidaleo malleabile		∨t	41	45	45	50	50	60	
		a	0,03	0,05	0,05	0,1	0,1	0,2	
Ottone e Bronzo		Vt	80	100	90	110	100	120	
		а	0,06	0,1	0,1	0, 2	0,2	0,3	
Leghe di alluminio		Vt	100	120	110	130	120	140	
		а	0,06	0,1	0,1	0,18	0,18	0,25	

Potenza di foratura

Il momento torcente Mt sulla punta elicoidale si calcola con la relazione:

$$M_t = F_t \cdot b$$
 [N

[N·mm]

$$b = (0,45 \div 0,6) \cdot d$$

0,45 per materiali fragili 0,6 per materiali tenaci

La forza di taglio F_t vale:

$$F_t = K_s \cdot q$$

• K_s = coefficiente di strappamento (dipende dal materiale)

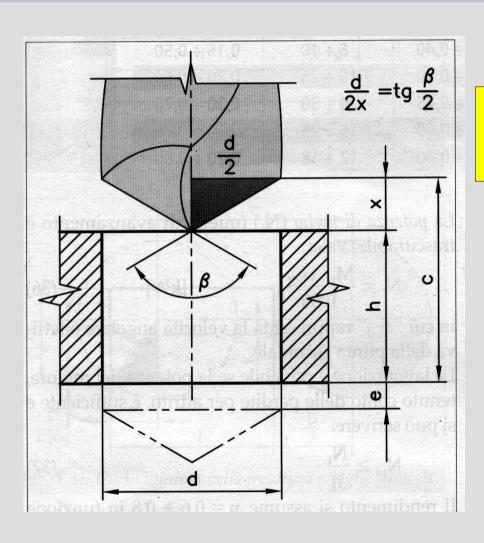
$$-$$
 = (4,8 \div 6) • R_m per l'acciaio e materiali non ferrosi

$$- = (4.2 \pm 5) \cdot R_m$$
 per la ghisa

•
$$q = \frac{a \cdot d}{4}$$
 [mm²] = sezione del truciolo

La potenza di taglio N_t vale:

$$N_t = \frac{M_t \cdot \omega_{\text{eff}}}{1000}$$
 [KW]


$$\omega_{\text{eff}} = \frac{2 \cdot \pi \cdot \text{n}}{60}$$
 [rad/s] rappresenta la velocità angolare effettiva della punta elicoidale

La lavorazione è possibile se

$$N_{m} \ge \frac{N_{t}}{\eta}$$

η = 0,6/0,8 il rendimento si assume in funzione dello stato della macchina

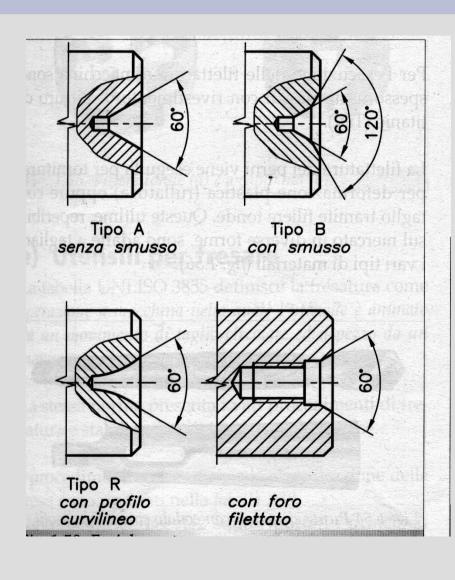
Tempi di foratura

La corsa minima di foratura

$$c = h + x = h + \frac{d}{(2 \cdot tg\frac{\beta}{2})} [mm]$$

Il tempo minimo di foratura

$$T_m = \frac{(c+e)}{(n\cdot a)}$$
 [min]

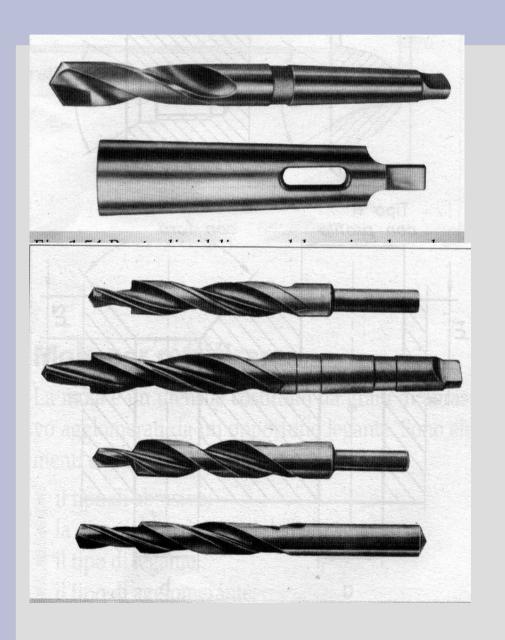

e = extracorsa di sicurezza

Utensili per la foratura

Gli utensili per la lavorazione dei fori si dividono in:

- 1) Punte per fori da centro UNI 3223
- 2) Punte a forare (punte elicoidali)
- 3) Allargatori cilindrici e conici, alesatori
- 4) Maschi e filiere

PUNTE PER FORI DA CENTRO

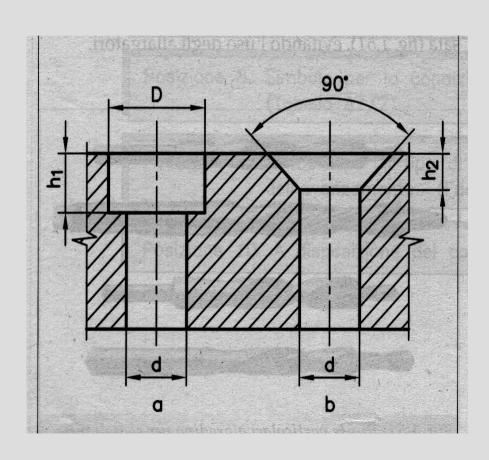


Punte per fori da centro

UNI 3223

- a) tipo A senza smusso di protezione
- b) tipo B con smusso di protezione
- c) tipo R con profilo curvilineo

PUNTE A FORARE



Le punte a forare possono essere in HSS o con taglienti riportati in carburi, a elica destra o sinistra

- esecuzione N (per acciai da costruzione, ghise grigie)
- esecuzione D (per materiali duri e tenaci)
- esecuzione T per materiali teneri e malleabili)

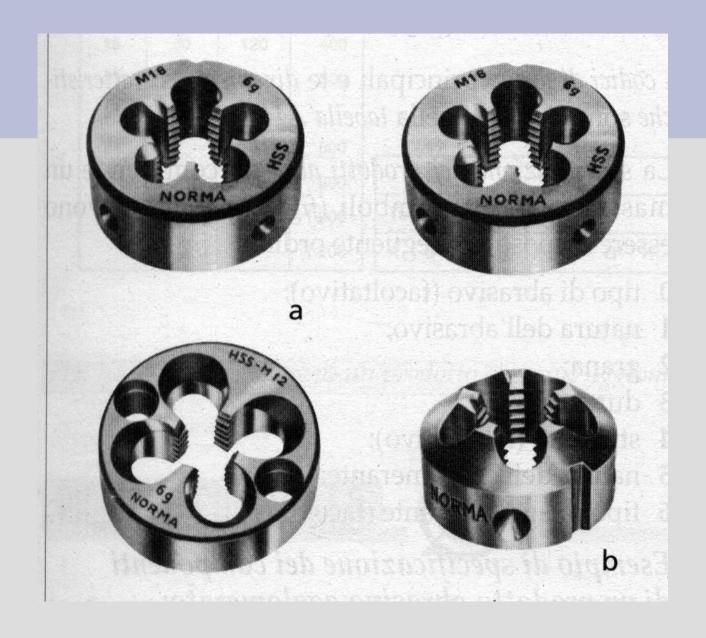
Punta N12 UNI 5616

ALLARGATORI

Gli allargatori cilindrici servono per creare la lamatura per alloggiare la testa cilindrica delle viti.

Gli utensili allargatori conici si usano per preparare i fori per la chiodatura o per le teste svasate delle viti.

Maschi e filiere



La filettatura può essere eseguita a mano (per produzioni molto modeste) o a macchina.

Nel primo caso sono disponibili serie di due o tre maschi per ogni diametro (sbozzatore...finitore)

Nel secondo caso si usano maschi con rivestimento di nitruro di titanio TiN

Serie di maschi (a mano e a macchina)

Filiere tonde e a campana